Classification of Medical X-ray Images for Automated Annotation

نویسندگان

  • SUMATHI GANESAN
  • T. S. SUBASHINI
چکیده

Of late, the amount of digital X-ray images that are produced in hospitals is increasing rapidly. Efficient storing, processing and classifying X-ray images have thus become an important research topic. Due to the increase in medical digital images, there is a rising need of managing this data properly and accessing them accurately. To overcome the difficulties of manual classification, the automated method is preferable and hence proposed in this work, wherein an effort has been made to automatically classify X-rays at the macro level (coarse level) using SVM classifier with six classes of X-ray images being taken, viz., chest, foot, spine, neck, head, and palm. Each class consists of 30 images collected from IRMA database. Initially, preprocessing is performed by using the M3 filter and its region-of-interest is found by applying connected component labeling (CCL) and both the shape and texture features were extracted. The fusion of shape and texture features gave a better performance of 96.56%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A CAD System Framework for the Automatic Diagnosis and Annotation of Histological and Bone Marrow Images

Due to ever increasing of medical images data in the world’s medical centers and recent developments in hardware and technology of medical imaging, necessity of medical data software analysis is needed. Equipping medical science with intelligent tools in diagnosis and treatment of illnesses has resulted in reduction of physicians’ errors and physical and financial damages. In this article we pr...

متن کامل

View Classification of Medical X-ray Images Using Pnn Classifier, Decision Tree Algorithm and Svm Classifier

In this era of electronic advancements in the field of medical image processing, the quantum of medical X-ray images so produced exorbitantly can be effectively addressed by means of automated indexing, comparing, analysing and annotating that will really be pivotal to the radiologists in interpreting and diagnosing the diseases. In order to envisage such an objective, it has been humbly endeav...

متن کامل

Automated X-Ray Image Annotation - Single versus Ensemble of Support Vector Machines

Advances in the medical imaging technology has lead to an exponential growth in the number of digital images that needs to be acquired, analyzed, classified, stored and retrieved in medical centers. As a result, medical image classification and retrieval has recently gained high interest in the scientific community. Despite several attempts, such as the yearly-held ImageCLEF Medical Image Annot...

متن کامل

Automated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy

Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...

متن کامل

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014